Q:

Consider the Ideal Gas LawPV = ​kT,where k>0is a constant. Solve this equation for V in terms of P and T.​a) Determine the rate of change of the volume with respect to the pressure at constant temperature. Interpret the result.​b) Determine the rate of change of the volume with respect to the temperature at constant pressure. Interpret the result.​c) Assuming k =1,draw several level curves of the volume function and interpret the results.

Accepted Solution

A:
Answer and explanation:Given : Consider the Ideal Gas Law, [tex]PV=kT[/tex] where k>0 is a constant. To find : Solve this equation for V in terms of P and T.Solution : [tex]PV=kT[/tex]Divide each side by P,[tex]V=\frac{kT}{P}[/tex] ....(1)a) Determine the rate of change of the volume with respect to the pressure at constant temperature. Interpret the result.Differentiate equation (1) w.r.t P,[tex]\frac{dV}{dP}=kT\frac{d}{dP}(\frac{1}{P})[/tex][tex]\frac{dV}{dP}=kT(-\frac{1}{P^2})[/tex][tex]\frac{dV}{dP}=-\frac{kT}{P^2}[/tex]​b) Determine the rate of change of the volume with respect to the temperature at constant pressure. Interpret the result.Differentiate equation (1) w.r.t T,[tex]\frac{dV}{dT}=\frac{k}{P}\frac{d}{dT}(T)[/tex][tex]\frac{dV}{dP}=\frac{k}{P}(1)[/tex][tex]\frac{dV}{dP}=\frac{k}{P}[/tex]c) Assuming k =1,  draw several level curves of the volume function and interpret the results.When k=1, [tex]PV=T[/tex][tex]\frac{dV}{dP}=-\frac{T}{P^2}[/tex] <0[tex]\frac{dV}{dP}=\frac{1}{P}[/tex] >0Refer the attached figure below.